Asymptotic and bootstrap tests for subspace dimension

نویسندگان

چکیده

Dimension reduction is often a preliminary step in the analysis of large data sets. The so-called non-Gaussian component searches for projection onto part data, and it then important to know correct dimension signal subspace. In this paper we develop asymptotic as well bootstrap tests based on popular fourth order blind identification (FOBI) method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Power of Bootstrap and Asymptotic Tests

We introduce the concept of the bootstrap discrepancy, which measures the difference in rejection probabilities between a bootstrap test based on a given test statistic and that of a (usually infeasible) test based on the true distribution of the statistic. We show that the bootstrap discrepancy is of the same order of magnitude under the null hypothesis and under non-null processes described b...

متن کامل

5 Addition and Subspace Theorems for Asymptotic Large Inductive Dimension

We prove addition and subspace theorems for asymptotic large inductive dimension. We investigate a transfinite extension of this dimension and show that it is trivial. 0. Asymptotic dimension asdim of a metric space was defined by Gromov for studying asymptotic invariants of discrete groups [1]. This dimension can be considered as asymptotic analogue of the Lebesgue covering dimension dim. Dran...

متن کامل

Isotropic Constant Dimension Subspace Codes

 In network code setting, a constant dimension code is a set of k-dimensional subspaces of F nq . If F_q n is a nondegenerated symlectic vector space with bilinear form f, an isotropic subspace U of F n q is a subspace that for all x, y ∈ U, f(x, y) = 0. We introduce isotropic subspace codes simply as a set of isotropic subspaces and show how the isotropic property use in decoding process, then...

متن کامل

Fachin Bootstrap and Asymptotic Tests of Long - Run Relationships in

Hypothesis testing on cointegrating vectors based on the asymptotic distributions of the test statistics are known to suffer from severe small sample size distortion. In this paper a bootstrap procedure for carrying out such tests is proposed and evaluated through a Monte Carlo experiment, finding that the Type I errors are always close to the nominal significance levels but power might be not ...

متن کامل

Likelihood-ratio tests for order-restricted log-linear models: A comparison of asymptotic and bootstrap methods

This paper discusses the testing of log-linear models with inequality constraints using both asymptotic and empirical approaches. Two types of likelihood ratio tests statistics are investigated: one comparing the order-restricted model to the independence model, which is the most restricted model, and the other comparing the order-restricted model to the saturated model, or the data. As far as ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 2022

ISSN: ['0047-259X', '1095-7243']

DOI: https://doi.org/10.1016/j.jmva.2021.104830